What is a Digital Signature?
An introduction to Digital Signatures, by David Youd



	[image: image1.png]



Bob
	[image: image2.png]



	[image: image3.png]



(Bob's public key) 

[image: image4.png]



(Bob's private key)


Bob has been given two keys. One of Bob's keys is called a Public Key, the other is called a Private Key. 

	Bob's Co-workers:

	[image: image5.png]



	[image: image6.png]B




	[image: image7.png]



	[image: image8.png]



	[image: image9.png]



Anyone can get Bob's Public Key, but Bob keeps his Private Key to himself 

	Pat
	Doug
	Susan
	
	


Bob's Public key is available to anyone who needs it, but he keeps his Private Key to himself. Keys are used to encrypt information. Encrypting information means "scrambling it up", so that only a person with the appropriate key can make it readable again. Either one of Bob's two keys can encrypt data, and the other key can decrypt that data. 

Susan (shown below) can encrypt a message using Bob's Public Key. Bob uses his Private Key to decrypt the message. Any of Bob's coworkers might have access to the message Susan encrypted, but without Bob's Private Key, the data is worthless. 

	[image: image10.png]



	[image: image11.png]



	"Hey Bob, how about lunch at Taco Bell. I hear they have free refills!"
	[image: image12.png]Enerypt with
Public Key





	HNFmsEm6Un BejhhyCGKOK JUxhiygSBCEiC 0QYIh/Hn3xgiK BcyLK1UcYiY lxx2lCFHDC/A 


	[image: image13.png]



	[image: image14.png]



	HNFmsEm6Un BejhhyCGKOK JUxhiygSBCEiC 0QYIh/Hn3xgiK BcyLK1UcYiY lxx2lCFHDC/A 
	[image: image15.png]Decrypt with
Private Key





	"Hey Bob, how about lunch at Taco Bell. I hear they have free refills!"


With his private key and the right software, Bob can put digital signatures on documents and other data. A digital signature is a "stamp" Bob places on the data which is unique to Bob, and is very difficult to forge. In addition, the signature assures that any changes made to the data that has been signed can not go undetected. 

	[image: image16.png]IR
fia s





	[image: image17.png]Hash




	[image: image18.png]Message
Digest







	[image: image19.png]



	To sign a document, Bob's software will crunch down the data into just a few lines by a process called "hashing". These few lines are called a message digest. (It is not possible to change a message digest back into the original data from which it was created.) 


	[image: image20.png]Message
Digest





	[image: image21.png]Encrypt with
Private Key





	[image: image22.png]Signature







Bob's software then encrypts the message digest with his private key. The result is the digital signature. 

	[image: image23.png]Signature





	[image: image24.png]Append




	[image: image25.png]IR
fia s

Signature







Finally, Bob's software appends the digital signature to document. All of the data that was hashed has been signed. 

	[image: image26.png]IR
fia s

Signature





	[image: image27.png]Hash




	[image: image28.png]Message
Digest






	
	[image: image29.png]Decrypt with
Public Key





	[image: image30.png]Message
Digest







Bob now passes the document on to Pat. 

	[image: image31.png]



	First, Pat's software decrypts the signature (using Bob's public key) changing it back into a message digest. If this worked, then it proves that Bob signed the document, because only Bob has his private key. Pat's software then hashes the document data into a message digest. If the message digest is the same as the message digest created when the signature was decrypted, then Pat knows that the signed data has not been changed. 


Plot complication...
	[image: image32.png]B




	Doug (our disgruntled employee) wishes to deceive Pat. Doug makes sure that Pat receives a signed message and a public key that appears to belong to Bob. Unbeknownst to Pat, Doug deceitfully sent a key pair he created using Bob's name. Short of receiving Bob's public key from him in person, how can Pat be sure that Bob's public key is authentic? 


It just so happens that Susan works at the company's certificate authority center. Susan can create a digital certificate for Bob simply by signing Bob's public key as well as some information about Bob. 

	Bob Info: 
    Name 
    Department 
    Cubical Number 
Certificate Info: 
    Expiration Date 
    Serial Number 
Bob's Public Key: 
    [image: image33.png]


 



	
	[image: image34.png]



	[image: image35.png]Sign Data




[image: image36.png]



	[image: image37.png]



	[image: image38.png]





Now Bob's co-workers can check Bob's trusted certificate to make sure that his public key truly belongs to him. In fact, no one at Bob's company accepts a signature for which there does not exist a certificate generated by Susan. This gives Susan the power to revoke signatures if private keys are compromised, or no longer needed. There are even more widely accepted certificate authorities that certify Susan. 

Let's say that Bob sends a signed document to Pat. To verify the signature on the document, Pat's software first uses Susan's (the certificate authority's) public key to check the signature on Bob's certificate. Successful de-encryption of the certificate proves that Susan created it. After the certificate is de-encrypted, Pat's software can check if Bob is in good standing with the certificate authority and that all of the certificate information concerning Bob's identity has not been altered. 

Pat's software then takes Bob's public key from the certificate and uses it to check Bob's signature. If Bob's public key de-encrypts the signature successfully, then Pat is assured that the signature was created using Bob's private key, for Susan has certified the matching public key. And of course, if the signature is valid, then we know that Doug didn't try to change the signed content. 

Although these steps may sound complicated, they are all handled behind the scenes by Pat's user-friendly software. To verify a signature, Pat need only click on it. 



Benefits of digital signatures
There are three common reasons for applying a digital signature to communications:-

Authentication
Public-key cryptosystems allow encryption of a message with a user's private key. The message itself need not be sent in ciphertext. If a hash of the document is generated and then protected via encryption, the document cannot be altered in any way without changing the hash to match, which, if quality algorithms are properly used, will be quite difficult. By decrypting the hash using the sender's public key, and checking the result against a newly generated hash of the alleged plaintext, the recipient can confirm (with high confidence) that the encryption was done with the sender's private key (and so presumably by the user who should have been the only person able to use that key), and that the message hasn't been altered since it was signed. No recipient can ever be absolutely certain the purported sender is indeed the signer -- ie, the person who used the private key -- since the cryptosystem might have been broken, the key copied, or the whole scheme evaded using social engineering.

The importance of high confidence in both the message integrity and sender authenticity is especially obvious in a financial context. For example, suppose a bank's branch office sends instructions to the central office in the form (a,b) where a is the account number and b is the amount to be credited to the account. A devious customer may deposit £100, observe the resulting transmission and repeatedly retransmit (a,b), getting a deposit each time and getting rich in the process. This is an example of a replay attack.

[edit] Integrity
Both parties will always wish to be confident that a message has not been altered during transmission. Encryption of the message makes it difficult for a third party to read it, but that third party may still be able to alter it, perhaps maliciously, without actually reading it. An example is the homomorphism attack: consider a bank which sends instructions from branch offices to the central office in the form (a,b) where a is the account number and b is the amount to be credited to the account. A devious customer may deposit £100, intercept the resulting transmission and then transmit (a,b3) to become an instant millionaire.

[edit] Non-repudiation
In a cryptographic context, the word repudiation refers to the act of disclaiming responsibility for a message (ie, claiming it was sent by some third party, certainly not me; "I repudiate this message and its contents!"). A message's recipient may insist the sender attach a signature in order to make later repudiation more difficult, since the recipient can show the signed message to a third party (eg, a court) to reinforce a claim as to its origin. However, loss of control over a user's private key will mean that all digital signatures using that key, and so 'from' that user, are suspect. Noticing that such a loss of control has occurred is not a cryptographic problem, but a human space one, and is unsolved. Short of special purpose protocols to address this issue, digital signatures alone cannot provide inherent non-repudiation

Implementation of public-key digital signatures
Public-key digital signature schemes rely on public-key cryptography. In public-key cryptography, each user has a pair of keys: one public and one private. The public key is distributed freely, but the private key is kept secret by the user; another requirement is that it should be computationally infeasible to derive the private key from the public key.

Generally, digital signature schemes include three algorithms:

· A key generation algorithm 

· A signing algorithm 

· A verification algorithm 

For example, consider a situation in which Bob sends a message to Alice and she wants to be certain it came from him. Bob sends his message to Alice, attaching a digital signature. The digital signature was generated using Bob's private key, and takes the form of a string of bits (normally represented as a string of characters (ie, digits and letters)). On receipt, Alice can then check whether the message really came from Bob by running the verification algorithm on the message together with the signature, using Bob's public key. If they match, then Alice can be confident the message really was from Bob, because quality digital signature algorithms are so designed that it is very difficult to forge a signature to match a given message (unless one has knowledge of the private key, which Bob must keep secret).

Some digital signature algorithms
· Full Domain Hash, RSA-PSS etc., based on RSA 

· DSA 

· ECDSA 

· ElGamal signature scheme 

· Undeniable signature 

· SHA (typically SHA-1) with RSA 

· Rabin signature algorithm 

· Pointcheval-Stern signature algorithm 

· Schnorr signature 

Legal aspects
Legislation concerning the effect and validity of digital signatures includes:

Brazil
· Medida provisória 2.200-2 (Portuguese) - Brazilian law states that any digital document is valid for the law if it is certified by ICP-Brasil (the official Brazilian PKI) or if it is certified by other PKI and the concerned parties agree as to the validity of the document. 

China
· Electronic Signature Law of the People's Republic of China (Chinese) - The stated purposes include standardizing the conduct of electronic signatures, confirming the legal validity of electronic signatures and safeguarding the legal interests of parties involved in such matters

India
· Information Technology Act, 2000 

· (PDF) India's Information Technology Act, 2000
Association of digital signatures and trusted time stamping
Digital signature algorithms and protocols do not inherently provide certainty about the date and time at which the underlying document was signed. The signer might, or might not, have included a time stamp with the signature, or the document itself might have a date mentioned on it, but a later reader cannot be certain the signer did not, for instance, backdate the date or time of the signature. Such misuse can be made impracticable by using trusted time stamping in addition to digital signatures.

[edit] Additional security precautions
[edit] Putting the private key on a smart card
All public key / private key cryptosystems depend entirely on keeping the private key secret. A private key can be stored on a user's computer, and protected by, for instance, a local password, but this has two disadvantages:

· the user can only sign documents on that particular computer and 

· the security of the private key completely depends on the security of the computer, which is notoriously unreliable for many PCs and operating systems. 

A more secure alternative is to store the private key on a smart card. Many smart cards are deliberately designed to be tamper resistant (however, quite a few designs have been broken, notably by Ross Anderson and his students). In a typical implementation, the hash calculated from the document is sent to the smart card, whose CPU encrypts the hash using the stored private key of the user and returns it. Typically, a user must activate his smart card by entering a personal identification number or PIN code (thus providing a two-factor authentication). Note that it can be sensibly arranged (but is not always done) that the private key never leaves the smart card. If the smart card is stolen, the thief will still need the PIN code to generate a digital signature. This reduces the security of the scheme to that of the PIN system, but is nevertheless more secure than are many PCs.

[edit] Using smart card readers with a separate keyboard
Entering a PIN code to activate the smart card, commonly requires a numeric keypad. Some card readers have their own numeric keypad. This is safer than using a card reader integrated into a PC, and then entering the PIN using that computer's keyboard. The computer might be running a keystroke logger (by its owner/operators intention or otherwise -- due to a virus, for instance) so that the PIN code becomes compromised. Specialized card readers are less vulnerable, though not invulnerable, against tampering with their software or hardware. And, of course, eavesdropping attacks against all such equipment are possible.

[edit] Other smart card designs
Smart card design is an active field, and there are smart card schemes which are intended to avoid these particular problems, though so far with little security proofs.

[edit] Using digital signatures only with trusted applications
One of the main differences between a digital signature and a written signature is that the user does not "see" what he signs. It's the application that presents a hash code to be encrypted with the private key, but in the case of a malicious application a hash code of another document might be presented so that the users thinks he is signing the document he sees on the screen but is actually unwillingly signing another (probably less favorable).

